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3Groupe de Recherche en Electronique et Electrotechnique de Nancy, Université Henri Poincaré Nancy, France
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Abstract— A discontinuous Galerkin method is proposed for
computing the current density in superconductors characterized
by the power law J(E) ∼ E

1
n , with n > 1. This approach is

applied to solve the non linear diffusion problem satisfied by E.
An application example is given for a superconducting cylinder
subjected to an external magnetic field. Results are compared
to those given by the mixed FE-FV method and those obtained
using a commercial software. Efficiency and robustness of the
approach are illustrated on an example with n = n(r).

Index Terms— Superconductors, non linear diffusion, Discon-
tinuous Galerkin method, interior penalty method, finite element
(FE), finite volumes (FV).

I. INTRODUCTION

The constitutive power law is widely used to characterize
high temperature superconductors. It is written as:

J

Jc
=

(
E

Ec

) 1
n

(1)

where J is the current density, E the electric field, Ec the
critical electric field, Jc the critical current density and n
the power law exponent. The case n = 1 corresponds to a
normal conductor, while n = +∞ represents the critical state
model suggested by Bean. Several numerical methods have
been proposed to solve non linear diffusion problems resulting
from Maxwell’s equations [1], [2]. Their results are satisfying
when n is uniform. Few of them are suited when n is large
and models where n locally varies are uncommon.

In this paper we present a Discontinuous Galerkin (DG)
method for computing induced fields in superconductors. We
work on solving the non linear diffusion problem in terms
of the electric field in order to determine the current density
when n is large or locally varies. DG methods are well suited
to treat discontinuous forms. They use high-order polynomials
basis for reducing spurious oscillations. In addition they are
naturally well adapted for parallel computing.

II. THE DIFFERENTIAL SYSTEM

In a two-dimensional setting where the magnetic induction
depends only on two space variables (B = (Bx, By)), the
electric field E and current density J have a single nonzero
component, and can thus be treated as scalar fields. We set u =
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E/Ec, β(u) = J/Jc and c = µ0JC/Ec. The superconductor
sample has a vacuum magnetic permeability µ0. Denoting the
superconductor domain by Ω and its border by ∂Ω, Maxwell’s
equations and the constitutive law (1) lead to the following non
linear diffusion problem:

(S)


∂β(u)

∂t
− 1

c
4u = 0 in Ω

−→
∇u · −→ν = Cb(t) on ∂Ω

. (2)

The system is established with a zero initial condition and
the boundary condition on ∂Ω results from Faraday’s law:

Cb(t) = E−1
c (

∂By
∂t

,−∂Bx
∂t

) · −→ν , (3)

where −→ν is the outward normal vector.

III. DISCONTINUOUS GALERKIN METHOD

Let us consider a triangulation Ih =
⋃
K of the domain Ω.

The Discontinuous Galerkin approach combines discretisation
tools of finite element (FE) and finite volume (FV) methods.
It consists in solving on each K the weak formulation of the
system (2):

c

∫
K

∂β(u)

∂t
ϕdK −

∫
K

∇u∇ϕdK −
∫

Γ

∇u · νϕdΓ = 0 (4)

where ϕ is a test function, Γ = ∂K is an interface between
two elements of Ih or a part of ∂Ω.

A. FE discretization on each element

On each triangle K ∈ Ih an FE approximation space is
defined. Its basis functions are polynomials of degree p. The

number of nodes on K is given by
1

2
(p+ 1)(p+ 2).

The discrete solution is written as uK =
∑
j

uKj ϕ
K
j , with

uKj its value at node j. Since β is a liptschitz function, we
assume that β(uK) =

∑
j

β(uKj )ϕKj . The mass matrix MK is

determined from the L2 scalar product: MK
ij =

∫
K

ϕKi ϕ
K
j dK.

The global mass matrix MΩ is block diagonal.
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Fig. 1. Mapping of a simplex

B. Flux term on the interface of two elements

As in a FV method, the interface term
∫

Γ

∇u · νϕdΓ is

treated by a numerical flux F which verifies FK,L = −FL,K ,
where K and L are neighboring elements. Its construction
needs the following functions at the interface K ∩ L: mean
value {u} =

uL + uK
2

and the jump [|u|] = uL − uK .
Many expressions of F have been proposed in the case

of the Laplacian operator. We choose the expression of F
based on the Non symmetric Interior Penality method (NIP).
The NIP method consists in introducing a penalty term∫

Γ

θ[|u|][|ϕ|]dΓ, in order to guarantee continuity of u and ∇u
at the interface [3]. The numerical flux is given by:

F →
∫

Γ

{∇u} · [|ϕ|]νKdΓ +

∫
Γ

θ[|u|] · [|ϕ|]νKdΓ (5)

where θ is a positive parameter.

C. The discrete problem

Rules for evaluating the different terms of the weak formula-
tion (4) exploit properties of mesh parametrization also called
”mapping”. The mapping is based on a bijective function Ψ
such as Ψ(x, y) = (ξ, η). This function allows to transform
the physical space (x, y) to a parametric space (ξ, η) [4].

The basis functions of the parametric space are the linear
combinations of ξαηβ , where α + β ≤ p. In this space,
derivative and integration operations are more convenient. The
terms of the weak formulation are evaluated in the parametric
space and mapped in the physical space.

After time discretization a discrete problem (6) is obtained
on each K:

MK

β(uKk+1)− β(uKk )

δt
= fK(t, uKk+1) (6)

where δ is the time step, uKk is solution at instant tk,
and fK(t, uKk+1) represents the discretization of the laplacian
operator with numerical flux given in (5). A change of variable
v = β(u) is set and the current density β(u) is calculated using
a Newton iterative method.

IV. NUMERICAL RESULTS

We consider a superconducting cylinder of radius R =
1.5mm, characterized by Jc = 14.15A/mm2, Ec =
10−4V/m. It is subjected to an external transverse magnetic
field in the x direction, B(t) = B0 sin (2πft), with f =
0.5Hz, T = 2s and B0 = 15mT .

Fig. 2. Current density distribution at t = 0.5s with n=200: (left) DG
method with p = 1. (right): mixed FE-FV method

Fig. 3. Current density distribution at t = 0.5s, computed by DG method
with p = 4 (left) and H−formulation (right)

A. The case of constant n

For n = 200, the current density distribution is plotted at
t = T/4. Notice that we did not get convergence using the
H−formulation [1] implemented under the Comsol software.
Fig. 2 presents a comparison of our result to that given by the
mixed FE-FV method [2]. A good agreement is observed.

B. Example with non uniform n

It is well know that the n exponent is not a constant. It
locally varies and becomes large in regions where temperature
is close to 0K.

In this example we suppose that n(r) = n0 exp (4r/R),
with n0 = 1 and r =

√
x2 + y2. We note that n(R) = 54

and n(0) = 1.The comparison to the results issued from
H−formulation show the validity of our approach. Fig.3
presents the current density distribution at t = T/4. Near the
border n is large and J/Jc is close to 1. When approaching the
center of the cylinder, n decreases and J/Jc becomes lower.

We will analyze these results further in the extended paper,
and present a performance comparison between the new DG
formulation, the FE-FV method and the standard FE technique.
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